skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sabharwal, Ashish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chain of thought is a natural inference-time method for increasing the computational power of transformer-based large language models (LLMs), but comes at the cost of sequential decoding. Are there more efficient alternatives to expand a transformer's expressive power without adding parameters? We consider transformers with padding tokens as a form of parallelizable test-time compute. We show that averaging-hard-attention, masked-pre-norm transformers with polynomial padding recognize precisely the class FO -uniform TC of extremely parallelizable problems. While the TC upper bound was known, proving a matching lower bound had been elusive. Further, our novel analysis reveals the precise expanded power of padded transformers when coupled with another form of inference-time compute, namely dynamically increasing depth via looping. Our core technical contribution is to show how padding helps bring the notions of complete problems and reductions, which have been a cornerstone of classical complexity theory, to the formal study of transformers. Armed with this new tool, we prove that padded transformers with looping on inputs of length recognize exactly the class FO -uniform TC of moderately parallelizable problems. Thus, padding and looping together systematically expand transformers' expressive power: with polylogarithmic looping, polynomially padded transformers recognize precisely the class FO -uniform NC , the best that could be expected without losing parallelism (unless NCP ). Our results thus motivate further exploration of padding and looping as parallelizable alternatives to chain of thought for test-time compute. 
    more » « less
  2. State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill & Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). But do SSMs truly have an advantage (over transformers) in expressive power for state tracking? Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class 𝖳𝖢0. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state" in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems. 
    more » « less
  3. Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming projected pre-norm (a slight generalization of standard pre-norm), adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems—the first exact characterization of a type of transformers in terms of standard complexity classes. Together, this provides a nuanced framework for understanding how the length of a transformer’s chain of thought or scratchpad impacts its reasoning power. 
    more » « less
  4. One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformers can be equivalently expressed in a generalization of first-order logic. However, finite-precision transformers are a weak transformer variant because, as we show, a single head can only attend to a constant number of tokens and, in particular, cannot represent uniform attention. Since attending broadly is a core capability for transformers, we ask whether a minimally more expressive model that can attend universally can also be characterized in logic. To this end, we analyze transformers whose forward pass is computed in logn precision on contexts of length n. We prove that any log-precision transformer can be equivalently expressed as a first-order logic sentence that, in addition to standard universal and existential quantifiers, may also contain majority-vote quantifiers. This is the tightest known upper bound and first logical characterization of log-precision transformers. 
    more » « less
  5. Despite their omnipresence in modern NLP, characterizing the computational power of transformer neural nets remains an interesting open question. We prove that transformers whose arithmetic precision is logarithmic in the number of input tokens (and whose feedforward nets are computable using space linear in their input) can be simulated by constant-depth logspace-uniform threshold circuits. This provides insight on the power of transformers using known results in complexity theory. For example, if L≠P (i.e., not all poly-time problems can be solved using logarithmic space), then transformers cannot even accurately solve linear equalities or check membership in an arbitrary context-free grammar with empty productions. Our result intuitively emerges from the transformer architecture's high parallelizability. We thus speculatively introduce the idea of a fundamental parallelism tradeoff: any model architecture as parallelizable as the transformer will obey limitations similar to it. Since parallelism is key to training models at massive scale, this suggests a potential inherent weakness of the scaling paradigm. 
    more » « less
  6. Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid common reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning. 
    more » « less